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Phase Transitions in the Ising Model 
with Transverse Field 

J a m e s  R.  K i r k w o o d  I 
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We show the existence of a phase transition in the Ising model with transverse 
field for dimensions v/> 2 provided the transverse term is sufficiently small. This 
is done by proving long-range order occurs using the reflection positivity of the 
Hamiltonian and localization of eigenvectors. 
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INTRODUCTION 

In studying the problem of the existence of a phase transition for a statistical 
mechanical system one usually attempts to apply one of two general 
techniques. The first (historically) is a geometrical argument pioneered by 
Peierls (1) and made rigorous by Griffiths. ~2) This method involves estimating 
the probability of certain configurations using contours which are naturally 
associated with those configurations. This method was developed for 
classical systems and was extended by Ginibre (3) to certain quantum lattice 
systems. He did this by adding a dimension (corresponding to time) to the 
lattice and applied the Trotter product formula to deal with the problem of 
noncommuting operators. The other approach, developed by Frohlich, 
Simon, and Spencer, (4) uses Fourier analysis to establish an infrared bound 
on certain thermodynamic functions. However, to employ this technique the 
Hamiltonian must be reflection positive. 

The model that will be considered here is an Ising model perturbed by a 
transverse field. To describe this model, let A be a finite rectangular subset of 

~Department of Mathematics, Sweet of Mathematics, Sweet Briar College, Sweet Briar, 
Virginia 24595. 

407 

00224715/84/1100-0407503.50/0 �9 1984 Plenum Publishing Corporation 



408 Kirkwood 

Z ", where v t> 2. For i C Z v let H(i) be C 2 regarded as a Hilbert space with 
the usual inner product. Define 

H A : ~ n ( i )  (t.1) 
ieA 

Let ax(i) and a'(i) be the Pauli spin matrices acting on the site i: 

ax(i)=(~ 0), a'(i)= (~ 01) (1.2) 

For a a configuration in {--1, 1 }A, set 

Io) = @ la(i)) (1.3) 
ieA 

where 

according to whether the spin at site i is up or down. 
For the model under consideration, the Hamiltonian is given by 

(1.4) 

i , jeA ieA 
Ii--jl=l 

For A E B(HA), the thermodynamic expectation at inverse temperature fl, 
(')A,~, is given by 

1 
(A)A,9 = Tr e_~H A TrAe -3nA (1.6) 

We will apply the concept of reflection positivity developed by 
Frohlich, Simon, and Spencer to show the existence of a phase transition in 
this model for e small. In particular, we use the idea of exponential 
localization of eigenvectors developed by Frohlich and Lieb (5) to show the 
existence of long-range order for fl > flo and e < ~e with ee independent of ft. 
It follows that the ground state for the model exhibits long-range order. A 
discussion of the final comment is contained in Ref. 6. 

Remarks. This model has been considered by Ginibre, (3) and he has 
shown that spontaneous magnetization occurs in two dimensions for e -~ 0 as 
fl-1/2, f l~  oo. This result is counterintuitive in that at zero temperature 
(fl = c~), e would have to be zero for spontaneous magnetization to occur. In 
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Ref. 7, the Peierls contour estimates which Ginibre obtained were used to 
analyze a slightly modified version of the transverse Ising model by operator 
theoretic techniques. This involved recognizing the changing length of the 
contours as time evolves as being a random walk on the positive integers. 
One then obtains a path space measure which may be estimated by using a 
Laplace transform. This technique gave only a slightly better results in that e 
need go to zero only at the rate fl-1/3 

The reader is also referred to the work of Driessler, Landau, and 
Perez, (8) in which path methods are applied to the Ising model with 
transverse field to derive some correlation inequalities and obtain bounds on 
the spontaneous magnetization for dimensions v >I 3. 

2. REFLECTION POSITIVITY AND EXPONENTIAL 
LOCALIZATON OF EIGENVECTORS 

In this section we follow methods developed by Frochlich and Lieb ~5) to 
show that a phase transition occurs for e small, independent of fl in the 
transverse Ising model. We provide a sketch of the main ideas of their 
technique and show how these methods apply to the model under 
consideration. Recall the Hamiltonian 

[ 1 

i~A i , j~A  
l i - j l  = 1  

Theorem 2.1. Let HA, ~ be as above and assume v ~ 2 where v is the 
dimension of the lattice. Then there is an M >  0 and tic such that 
I(crz(o)trz(j))AI~M for fl>flc uniform in A, independent of j for e 
sufficiently small. That is, long-range order occurs. 

The proof given here is for the two-dimensional case. The extension to 
higher dimensions will be clear. First note that since 

az(i) = 1 -- 2P-(i)---- 2P+ ( i ) -  i (2.2) 

where P+ (i) [P-( i ) ]  is projection onto configuration with spin up (down) at 
site i, then 

(az(o) a~(j))A = 1 -- 4 ( P -  (0) P+ (J))A (2.3) 

What will be shown is 

(P-(O)P+(j))a <~ 0 < 

independent of j ,  uniform in A. 

(2.4) 
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Let p be a path made up of line segments joining nearest-neighbor sites 
such that p connects site 0 with site j. If a is a configuration in which 
a(O) 4: a(j) the path p must intersect at least one Peierls contour. Let/3 
denote the midpoints of the lattice bonds which make up p and let x E/3 be 
the point nearest to i where p intersects a Peierls contour that surrounds 
either site 0 or site j. Let F(x, b, a) denote a contour that surrounds site i or 
site j but not both, has shape a, length b, and intersects p at x. Let Pr(x,b,~) 
be projection onto configurations which have such a contour. Then 

(P (O)P+(J))A ~ +._.:~ ~ ~ (Pr(x,b,,~))A (205) 
x ~p  b<~4 o~ 

The main step of the proof is to show that 

(Pr(x,b,~))A ~ e-"b (2.6) 

for/~ sufficiently large, uniform in A. If this is the case, then the right-hand 
side (2.5) may be bounded as required by (2.4). 

To prove inequality (2.6), note that for any contour/~ 

(Pr)A=( .~i>+ P+(i)P-(j)+ H P (i)P+(J))A 
(i j)  F ( i , j ) c F  

i, F A 

where ( i , j )  does a nearest-neighbor pair pair and ( i , j ) C  F iff the bond 
between i and j is intersected by F. 

Lieb and Frohlich show that for reflection positive measures (which we 
define below) 

( ~I P+ (i) P- (j) ) ~(pA)f  '/21AI (2.8) 
( i , j )~F  A 

for some universal projector PA. In our case PA is projection onto the state 
which is perhaps best descirbed pictorially: 

+ - - - - + + - - - - +  
+ - - - - + + - - - - +  
+ - - - - §  
+ - - - - §  
+ - - - - + + - - - - §  
+ - - - - + §  
+ - - - - § 2 4 7  
+ - - - - + + - - - - +  
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where A is a cube with sides of length 2 M. We then adapt the Lieb-Frohlich 
principle of exponential localization to show that 

(PA)2 j/2 ~ e " (2.9) 

where ~ can be made arbitrarily large. Equations (2.7), (2.8), and (2.9) 
together imply the necessary inequality (2.6). 

In the remaining part of this section we show that our Hamiltonian is 
reflection positive and how this leads to (2.9). Finally, we prove the key 
estimate (2.9) in Theorem 2.2 below. 

We now review the concept of reflection positivity, which is a central 
idea in the proof. We restrict our attention to two dimensions and consider 
the sites to have half-integer coordinates. Divide the system about the line 
x = 0 to obtain A = {sites whose first coordinate is negative} and A+ = 
{sites whose first coordinate is positive}. If  o ~ {-1,  1} a we can regard its 
restriction to {-1,  1} a -  by o_.  Define F = {FlF(o)=h(a_) for some h} 
and similarly for F+ .  Let R: {--1, 1 }a+ ~ {--1, 1 }a_ by R~(ix, iy) = ~(--ix, iy) 
where i = fix, iy). We write a = Ra+ .  Define 0: F ~ F+ by 

OF(o) = Oh(a+) = h(Ro + ) 

Reflection positivity is the property that (FOF)a ~ 0 for F C F _ .  
We now show that the measure defined by 

g~(o) = exp [-flHa, ~(o)] 

is reflection positive. To see this, we write 

(2.1o) 

(2.11) 

a s  

Ha,o = -  ~ '  az(i)az(j) (2.12) 
i,j~A 

l i - - j I  = 1 

v v, ov, Ha,o = H+ + OH+ + ._. (2.13) 

where H+ involves terms to the right of x =  0 and ViOV i are straddling 
terms. Now if F C F+ and ( )o denotes expection with respect to product 
measure then 

= ( 0 oxp (  0v0) ~  

Za,o n~ FI  (n,!) , o 

~> 0 (2.14) 
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by expanding exp(V~OVi) in a power series. Since the transverse term K A 
involves no straddling terms, HA, ~ is reflection positive. 

To prove inequality (2.8) let F =  F v U F  H where F n = {(i, j ) C  F I the 
contour between i and j is horizontal} and F v = F \ F  n. Let FH,e= 
{( i , j )EFnl  smaller y coordinate of i and j is even} and Fn,o=Ft.1\Fn, e. 
Define similar sets Fv, o and Fv, e. Thus 

F =  F u ,  o k..3 F n ,  e U F v ,  o L.) Fb. e (2.15) 

and the sets are pairwise disjoint. Applying the Schwarz inequality twice 
gives 

({,.jIfD ~ P+(i) P - ( j ) )  ~ ~I ( I] P+( i )P - ( J ) ) I / 4  (2.16) 
", r A vt=H,V ( i , j ) ~ f  a, ~ 

/3=e,O 

Following Lieb and Frohlich, let ~ denote an arbitrary nonempty subset of 
F/~,e. Consider 

Let 

Z = max P+(i)e-(j (2.17) 

Using translation 
Schwarz inequality repeatedly Lieb and Frohlich show 

z 

The following theorem provides the key estimate of (PAPA" 

invariance and reflection positivity, by applying the 

(2.18) 

Theorem 2.2. For any ~t > 0, there is a tic and ec such that if fl > tic 
and e < G and HA, . as given above, then 

D \I/IAI e - u  --A/A,~ < (2.19) 

Proof. Note that if EA(dk ) is the spectral measure of HA, ~ and eo(e ) is 
the infimum of the spectrum of HA,e, then 

1 (eo(6)+5 ml e -~k Tr[EA(dk)]PA 
(PA - zA, 4o(0 

1 ~ A~41 e_~k q Za,~(fl) 0(e) + Tr[Ea(dk)]P A (2.20) 
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Here A > 0 will be chosen later. The terms on the right-hand side of (2.20) 
will be denoted by R _ (fl, A) and R + (fl, A ), respectively. 

We first treat R+ ~ ,  A). We have 

1 f; R + (fl, A) ~ ~ exp{--fl[e0(~ ) + A IAI]} o~6) +a lal Tr[Ea(dk)] 

<~ exp{-fl(eo(e ) + A tA 1]} Tr(1) (2.21) 

Now by Jensen's inequality, 

Z A,~(fl) = Tr e-~/~a'e = ~ (6 l e-~Zca'6 l a )/> S ~ exp(--fl(a I Ha,6 l a))  (2.22) 
lY O" 

where we take as an orthonormal basis the eigenvectors for the Ising part of 
H A , ~ "  

Then since (a I K A ]~ )=  0 for those vectors, 

exp(-fl(al Ha , , l a ) )  = ~ exp(-fl(al H[sing la)) = Zisi,g ~> e ~lal (2.23) 
cr G 

where the last inequality follows from taking cr as the state with alternating 
spins. It follows that 

Te 1 2 TM 
- -  ~< (2.24) 
zA, q ) e ml 

We combine this with (2.21) to obtain 

R +(,8, A) ~ exp{-fl[e0(e ) + A IAI + IA I]} 21al (2.25) 

We need a lower bound of e0(e ). By first-order perturbation theory for a two- 
site model, there is a x such that 

I ~ [ax(i)+crX(j)]+crz(i)crz(j)I > / - 1 - K ~  2 (2.26) 

Summing over all bonds in A, we get 

e0(e )/> -IAI (1 + Ke 2) (2.27) 

Thus we have the following lemma. 

Lemma 2 . 3 .  There as a x for which 

R +(/?,A) 4 2'al exp[--fl IAI (a  - xe2)]  (2.28) 
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localization of eigenvectors. 

Theorem 2.4 (Frohlich and Lieb~ 
operators on a Hilbert space H such that 

(i) A ) 0 

(ii) • ~ 6A 

for some 3, 0 ~< 6 < 1. Suppose 

(14 + B) qJ = ~o,, 

Choose p > it such that 

O = ~p(lg - -  it ) -  i 4 I 

Kirkwood 

To estimate R( f l ,  A) we use the following theorem on exponential 

Let A and B be self-adjoint 

IIv, LI = 1 

with tr > 0, and 

(gtPqJ) --I(gt, gl)(~i, ~,)j ~ 02a (2.29) 

Romork. The theorem says that 0 and ~ are approximately 
orthogonal. The intuition is that if 

Pa = ~ua = V a,0a,  (2.30) 

where 0a. are eigenvectors of A with eigenvalue it, < IA I, then 

a ,  = (qt A, 0 a , )  ~ e - "  t lA i -a , i  ( 2 . 3 1 )  

We now apply this theorem to our model. Let 

A, ,=- -  ( S ~ a~(i)az(j)-- l -~ca 2) (2.32) 
i , j~A 

I i - j L = l  

Be= eK A = - - e  N ~ ax(i) ( 2 . 3 3 )  z._..0 
iEA 

Moreover, 

Let M o denote the span of eigenvectors of A with eigenvalue >/p, and let 
E M o be a normalized vector such that 

(iii) [B(A - 2 ) - 1 ] J  o E M  o 

for j = 0, 1,..., d -  1 with d/> 1. Then 

I(O, < 0d 
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By the argument used in Eq. (2.26), 

+B, <~ 6.4 ,/a 

Let 

Eigenvalues of HA, ~ 
values of B, + A ~/a in the interval 

[eo(g ) + IAI(1 + K(e/6)2), eo(e ) + IAI(1 + to(e/a) 2 +A)] 

c [0, IA] (A + 2K(e/6)2)] 

p = IAI [2x(e/6) 2 + 2A] (2.34) 

in the interval [eo(e ), e0(e ) + A ]AI] correspond to eigen- 

(2.35) 

for 0 < 6 < 1. For an eigenvalue 2 of B, + A ~/a in this latter interval, p -)~/> 
d IAI so that 0 of the theorem may be taken as 

O-~ 2~ [ K(g'/~)Z + A (2.36) 

Since A , / a -  2 leaves M o invariant, where M o is the space spanned by 
eigenvectors of A,/a with eigenvalues 2 ~> p, part (iii) of the theorem amounts 
to computing the minimum number of steps required to transform the 
universal state PA of energy IAI to a state of energy <p. At worst, a flip can 
decrease the energy by 2 �9 2 ~ quanta, so that 

(2.37) d~> PAl [I_2K(e/O)2 2A ] 2 7 v  

(2.38) 

Using the theorem, we have the following estimate. 

kemma 2.5. If i -De(e /a )  2 - 2 A ) 0 , t h e n  

(~pa~) ~ 12~ [ g(e/~2 + d ] l lal[1 2 ~ ( . / ~ ) 2 - 2 a 1 / >  

with eigenvalue 2 E [e0(e ), 

(2.39) 

where r is any normalized eigenvector of Ha, . 
e0(e) + rA I A]. 

An immediate consequence is the following: 

Lemma 2.6. For 1 - 2 K ( g / O )  2 - -  2A >/0 

R-(/3'A) ~ I26 [ x(e/O)2 + ] I IAl[1-2t~(~/gi)2-2A]/2 

822/37/3-4-10 
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Proof. We have 

1 (  ) R_(/3,A) = (Z e-~:t") ~ e-~a"(O,PaO,)a (2.40) 
7l 

2tn<~ eo+ Z~ IA[ 

where r are normalized eigenvectors of H a ~ with eigenvalue 2,,  

sup ( # . P a O . ) a ~  < 126 [ x(e/d)2 + A ] I  laltl-z~(~/a)2 2a]/> 
n A (2.41) 

An<~eo+A [AI 

by the previous lemma. 1 
We now complete the proof of the key estimate of Theorem 2.2. By 

inequalities (2.28)and (2.41)we have 

(PA)  -- R A) + R_q , A) 

<<" 2'a'exp[-BlAl (A-xe~)]+12~[ x(e/~)aA +AII ,a,~1-2~(./a)2-2al/> 

(2.42) 

At this point we choose 

A = 2x(e/O) 2 = 1/6 (2.43) 

so that (using 6 < 1) 

(Pa)a ~ 21a' exp ( - f l - ~ - )  + (3~) 2"'1-3a' 

( f l lAl~ (36)Ja,/2~+~ 
~<2 ml exp - - i 2 - /  + (2.44) 

Thus for any/a > 0, there is a tic and a 6~ such that 

(Pa)~/ml < e - "  (2.45) 

for f l ) t i c  and 6 < 6c. By Eq. (2.43) 6 < 6 c is equivalent to 

e < e c = 6c(12X) -1/2 (2.46) 
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